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I. INTRODUCTION

The second, third, and fourth moments of fluctuation velocity,
temperature, and passive tracer concentrations, and their cross
correlations have generally been used to estimate the magnitude of
dispersive atmospheric transport. This applies to the transport of
momentum, energy, humidity, and contaminants such as pollutants.
To avoid overestimates of transport, we must also be able to
distinguish between wave induced and turbulent contributions to
these fluctuation quantities, since periodic wave motion is much
less dispersive than aperiodic turbulence. This applies
particularly in transitionally turbulent regimes and regions such
as the nocturnal atmospheric boundary layer and convective
entrainment zone, where the mean flow is punctuated by both
intermittent turbulence and waves. However, current algorithms for
separating waves from turbulence are either unreliable, not
operationally useful, or both. a facile wave/turbulence
discriminant has not been demonstrated in the literature.

Here we study DA, a self-affine, multi-fractal which may be the
first operationally useful wave/turbulence discriminant for typical
time series data. We discuss and demonstrate its advantages over
a self-similar fractal, Fourier transforms, and other standard
turbulence measures, such as Richardson number (R,), Brunt-ViisdlA
frequency (BVF), buoyancy length scale (IB), variances, and
turbulent kinetic energy (TKE). We also discuss this new method's
operational advantages over the phase averaging technique. For the
comparisons we use nocturnal data from the 300 meter tower at the
Boulder Atmospheric Observatory. We also suggest that DA be tested
as a general measure of the degree of chaos in systems ranging from
waves and limit cycles to standard Lorenz, Henon, and Poincare
maps, to transitional turbulence, and turbulence displaying an
extended inertial subrange.

Fractal self-similarity exists when a geometric feature re-appears
at successively smaller scales, where each successive scale is
separated by a constant scaling factor (Mandelbrot, 1977) . In
fluids where turbulence lacks rigid geometric structure, we must
instead test the statistical properties describing the ensemble
mean geometry of the flow structure for possible self-similarity.

Previous studies have suggested strong potential for a fractal
self-similarity approach to wave/turbulence disrrimination.
Feigenbaum (1980) discovered that low order turbil±ence, i.e.,
chaos, in viscousless systems possesses an underlying self-
similarity and hence fractally intermittent character. He showed
that this self-similarity in the density of Lagrangian particle
streamlines appears only when the attractor, the point or area
about which the particle motion occurs in real or phase space
becomes unstable, i.e., strange. For waves or even limit cycle
motion about fixed attractors, self-similarity does not occur.
Pertinent to time series analysis, this self-similarity appears in
real as well as phase space.
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With regard to reai viscous fluids, Kamada (1988a,b) showed a
length scale self-similarity in atmospheric transitional turbulence
for the capping inversion above a convective mixed layer.
Sreenivasan and Meneveau (1986), and Presad and Sreenivasan (1990)
found that the interfacial convolutions between turbulent and non-
turbulent regions of a shear flow are self-similar and thus have a
fractal dimension. However, pure self-similarity does not apply
across all atmospheric turbulence scales because eddies are
increasingly compressed vertically with scale, due to stability.
However, Lovejoy and Schertzer (1984) included this compression by
using a multi-fractal, self-affine stretch modification to the
standard self-similar fractal. Packard et al. (1980) and Pawelzik
and Schuster (1987) also studied the fractal dimensions of
attractors inferred from a time series.

However, the aim here is to find and utilize the fractal dimension
of the time series itself, not the dimension of the phase space
attractor or the dimension of the turbulence field in real space.
Since a time series is a digital sampling, a time series trace of
a fractal process should also show fractal characteristics. For
example, Carter et al. (1986) found that the known fractal
characteristics of cloud geometry in real space were also evident
in the time series of their infrared intensity versus azimuth
viewing angle.

In real applications fractal analysis has potential advantages over
standard spectral methods. 1) Less data manipulation is required.
Standard Fourier transform techniques require that the data be
periodic within the data window to avoid the introduction of
fictitious high frequency noise. This requires tapering the data
within the window so that its endpoints have the same value. This
is not required for fractal analysis. 2) Fractal analysis'
biggest advantage is that sudden amplitude changes, involving such
phenomena as truncated gravity wave trains, breaking Kelvin-
Helmholtz instabilities, or turbulent ramp structures pose no
problems. In Fourier analyses a linear combination of wave numbers
much higher than the time resolution is required to accurately
account for such near-discontinuities. This is because the basis
functions for standard spectral analysis: sinusoids, Legendre or
Leguerre polynomials, Bessel functions, etc., are global, i.e.,
infinite in length, rather than discrete; whereas fractal analysis
naturally assumes a discrete Chapeau (top hat) basis function over
the time resolution in question. And this basis function
inherently spans the ideal range: from the chosen span of the time
series to the available limit of resolution. Therefore, functions
involving frequencies shorter than the available resolution are not
required to portray large jumps or discontinuities. This suggests
that fractal analysis may be quite useful in analyzing discrete,
coherent wave trains and intermittent turbulence structures in
general.
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II. THEORY

A. Current ways to distinguish waves from turbulence

Since linear waves transport no heat, the cross-spectral method
assumes for waves that the vertical velocity and temperature
exhibit a small cospectrum and large quadrature spectrum, i.e.,
temperature lags vertical velocity by 900, while turbulence shows
a large cospectrum and small quadrature spectrum. But Finnigan
(1988) noted that near-surface gravity waves are non-linear, so the
co-spectrum is usually comparable to the quadrature spectrum.

The spectral gap method assumes a wave/turbulence gap in the
boundary layer power spectra (Nai-Ping, 1983). Caughey (1977) ties
the position of this gap to the Brunt-Vais~ld frequency (BVF),
which should be the highest frequency of gravity wave that the
atmosphere will support. This frequency is often, but not always,
lower than turbulence injection scales. Wave phase velocity also
adds to the apparent frequency. Thus, spectral gaps in wave number
may disappear in the frequency domain for time series from a fixed
sensor (Caughey and Readings , 1975).

Phase averaging subtracts the wave and mean components from the
signal, leaving turbulence as the remainder (Finnigan, ibid). But
one must assume a wave exists and its frequency must accurately
estimated prior to the analysis. A surface microbarograph array is
usually needed to determine wave frequency reliably, but most tower
sites lack microbarographs. Problems also arise, if wave
amplitudes change greatly with time, if coherence is lost after a
few periods, or if non-linear dispersion changes the wave
frequency. We suggest that phase averaging is suitable for some
aspects of wave/turbulence analysis, but only after wave presence
has been established, perhaps most easily by multi-fractal
analysis.

The following discusses how multi-fractal analysis can establish
such wave presence from single point measurements, without
microbarographs, or assumptions about quadrature spectra or
spectral gaps.

B. Basic concepts of self-similar fractal dimnesion

For clarity we outline basic fractal concepts before describing the
self-affine multi-fractal operator used for this analysis.
The minimum number of boxes of side z needed to cover a set of
points on a two-dimensional plot scales as

N~e F
N( e) I (II.1)

where D is defined as the capacity dimension of the set and F, the
lacunity (Mandelbrot, 1977). If the set forms a straight line,
then D = 1 because, if the box length is halved, twice as many
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boxes are needed to cover the line. If the set consists of
uniformly distributed points in a plane, then D = 2, since four
times as many boxes are needed.

If the points are not uniformly distributed, then D can be non-
integer. The set of points is then fractal with dimension D,
defined in the limit as 8 approaches zero. This definition is
called the box dimension, DB, (Mandelbrot, 1985), and is given as

DB = lim logN(E)
8 0 log-! (11.2)

4



Figure 1 - Construction of the Cantor set.
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The Cantor set in fig. 1 has a non-integer DB. It is formed by
removing the middle third of a line segment, removing the middle
third of each remaining segment, and re-iterating to infinity. The
set is self-similar because the geometric structure seen at the
largest scale re-appears for all smaller scales removed by
successive factors of three. For an initial unit length, N(1)=l
box of side e 1 is needed to cover the set. For E=1/3, N(1/3)=2,
and for e=1/9, N(1/9)=4. Thus, e is generally 3-n, and N(e) is 2n,
where n = 0,1,2,3,...,o (Grebogi et al., 1987). Noting that n--
implies z-0, from eqn. 11.2, DB for the Cantor set becomes
intermediate between a point (DB = 0) and a line (DB = 1). That is,

D B = lim log2n - log2 = 0.63092 ... (11.3)
,-= iog3 n  log3

Unlike the analytic Cantor set, DB must be evaluated numerically
for most fractal sets. This is done by removing the limit in 11.2
and reordering terms to get

logN(e) = logF - D.loge (11.4)

Then -DB is the slope of the plot of log N(E) vs. log e, and log F
is the y-intercept.

In practice, real time series will contain some noise, so L(e) will
not be exact. Thus, multiple values of E should be used, and some
form of regression employed to find the slope (see section III).
Moreover, the data may only be fractal over a certain range, so the
choice of inner and outer scales, e. and gi, over which the slope is
determined may be narrower than those defined by purely objective
limits.

Digitized data imposes an objective limit on ei because the curve
shape between discrete data points is unknown, so it is simplest to
assume a straight line. As before, one plots log N(e) vs loge to
find DB. For e < em the curve scales as a one dimensional line,
the assumed shape between adjacent data points. So the inner scale
of resolution, ei, must span at least three data points, i.e., 2,11.
This value happens to be same as the Nykqvist cutoff for Fourier
spectra, but for different reasons.

An objective criterion also exists for the choice of outer scale,
co, when the time series contains waves. As shown in fig. 2 for a
single sinusoid, log L(E) versus log e shows nearly zero slope for
e < X/3, whereas for e slightly greater than X/3 the plot is nearly
vertical. So we suggest for wave containing time series that co
Xm/3, where Xm is the foreseen minimum wave period.

6



Figure 2 -Seif-aff ins L(c) for 1800 point sinusoid.
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Mandelbrot (1977) describes another way to determine fractal
dimension for a continuous curve in two dimensions, such as a
geographical coastline. Here, curve length is defined as

L(e) = PN(e) ( .5)

where N(z) is given as

N() - F (11.6)

and F is again the lacunity.

Lacunity measures the length of one fractally scaling curve to
another of the same D. I.e., assume that within the limits, eo to
ei the fractal dimension is constant for any segment of a i -al curve
of finite length. Then for any two segments of unequal length,
11.6 shows that the step length ratio will be

F,
N(C) ED F (11.7)

N 2 (c) F2  F2

C D

Using 11.6 in 11.5, L(e) can be written as

(11.8)L()= Fel-

Taking the log of 11.8 yields the straight line equation,

logL(c) = logF + (l-D) loge (11.9)

The slope of log L(e) by log e yields (1 - D). To find D first
find L(EO). Then, from 11.9, log L(Eo) = log F + (l-D) logE,. Now
with L(j), log L(Ej) = log F + (1-D)logE. This yields two
equations in two unknowns, D and F, so in principle

log[ L(F0
)

D =L( (II.10)

log

This procedure amounts to spanning the curve with circles of
diameter e. So L(e) is also the minimum number of circles of
diameter e required to cover the curve times their diameter. Thus,
L(c) can be measured by stepping along the curve with a compass
whose span is set to e. Mandelbrot (1985) terms this estimate the
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"compass dimension", Dc.

To show that Dc is equivalent to DB, solve 11.8 for D to get

D = logL(c) - log(F) + 1 (11.11)
log 1

Substituting L(e) from 11.5 gives

D = logN(e) - log (F) (11.12)
log!

and in the limit as z - 0, since N(E) is much larger than F, this
yields

D = lim logN(e) (11.13)
C-0 log 1

£

which is DB.

In essence fractal dimension is a measure of the jaggedness or
degree of convolution of a curve given in terms of the power law
dependence of the curve length as a function of resolution.

The box method divides the data plane into discrete boxes of
length,E, where N(E) is the number of boxes having at least one
point on the curve. So, for DB every box in the domain must be
checked, even though most boxes are empty, while Dc considers only
the circles covering points on the curve. So though Dc and DB are
identical, Dc is faster to compute.

C. Time series applications

Unlike coastlines, a time series plot has axes with different units
of measure, time versus amplitude. This poses a problem, since the
"length" of a time series trace cannot be measured without
specifying an arbitrary scaling ratio between axis units. I.e.,
different ratios will give different values of Dc. Thus, though
calculable, Mandelbrot (1985) suggests that DC may not be
meaningful for time series analysis, since its value can even
exceed two, if the y to x-axis scaling ratio is large enough. This
warrants exploring a shift in approach to measuring fractal
dimension, which we describe as follows.

McHardy and Czerny (1987) applied a "self-affine", "multi-fractal"
operator to their time series data. Meaning "in the same way",
self-affinity requires that one axis be stretched or compressed at

9



each successive resolution by the same constant factor with respect
to the other axis. Thus, McHardy and Czerny defined their self-
affine "length metric" as

L(e) = IF(t+ e) -F( d (I.14)
0

where now the abscissa scaling changes by the factor, en/nl, each
time e changes by the factor E,+1/6 (their length metric differs
from the standard self-affine length metric, which uses the
integrand, ([F(t+E)-F(t)]2 + C2) ). This new metric leads to,

dlogL(c) (II.15)
dloge

L(e) from 11.14 will be much longer at small E, but note that D in
11.15 is defined as the change rate of log length with log
resolution, not the ratio of log length to log resolution. Since
time, 6, cancels in the length metric, L(E) only has units of
amplitude. This avoids arbitrary ratios between amplitude and time
units and makes the problem one dimensional, so D is less than
unity. Thus, eqn. 11.14 presents a natural choice for evaluating
time series. Hereaftes, we refer to D from this method as DA.

L(e) calculated from 11.14 will contain some noise contribution,
which is statistically independent of the signal. If its level is
known, we can estimate its contribution to L(E) by the formula,
L-obsd = L2sl + L2ic . White noise has DA = 1, so it tends toL-be = Lsignal Lnoise

increase the fractal dimension of the time series.

D. Relevant gravity wave and turbulence characteristics.

Gravity waves in the stable boundary layer can be generated by a
number of mechanisms, among them: wind shear (Kelvin-Helmholtz
instability), storm impulses, and flow over an obstacle. Their
amplitudes can vary from a few centimeters to hundreds of meters,
with periods from less than a minute up to 40 minutes (Stull,
1988). Wave generation due to flow over an obstacle is significant
here. Hunt (1980) gives the natural wavelength of flow over a hill
as

X = 2nUo/BVF , (11.16)

where U. is mean wind speed. The hill "length" is given as LI, the
horizontal distance across the hill at half its maximum elevation.
If X - 5L, then lee waves may occur with X. Moreover, if E - 2LI,
then strong lee waves are possible. Observational studies such as

10



Caughey and Readings (ibid), Caughey (ibid), and Nai-Ping (ibid),
suggest that waves and turbulence commonly coexist in the nocturnal
boundary layer, and turbulence generation can sometimes depend on
the wave. The idea that gravity waves transfer energy to Kelvin-
Helmholtz waves which then "break" is widely used as a model for
turbulence generation by waves (Stull, ibid; Atlas et al., 1970),
though this model is not universally accepted (Hines, 1988).

Finnigan (ibid) resolved the wave and turbulent portions of the
total kinetic energy by phase averaging, and showed horizontal TKE
developing in the first quarter wave cycle, while vertical TKE
arose during the ensuing third of the cycle. Both components
transferred energy from the wave to turbulence. They noted that
the wave seemed to modulate the turbulence, but the presence of the
turbulence had no apparent effect on the wave.

Gossard et al. (1985) suggest a generation mechanism for boundary
layer turbulence where local gradients of 0, u, and v increase
steadily, while turbulence decreases. Vertical shear eventually
reaches an insupportable value of local Richardson number, leading
to growth of local Kelvin-Helmholtz instabilities which grow into
turbulence. These various proposals for turbulence initiation and
wave/turbulence energy transfer are discussed in the context of our
fractal analysis in section IV.

12.



III. METHODS

A. Data

The Boulder Atmospheric Observatory (BAO) (Kaimal and Gaynor, 1983)
supplied the data for this study. Data samples included eight
levels at: 10, 22, 50, 100, 150, 200, 250, and 300 meters, of:

1. u, v, and w velocity components sampled at 10 Hz by
sonic anemometers.

2. wind direction and speed at 1 Hz by propeller vane
anemometers.

3. temperature at 10 Hz by platinum wire thermometers, and
at 1 Hz by quartz thermometers.

The 1 Hz data were given only as 10 second averages. The 10 Hz
data were given at both 10 Hz and as 10 second averages. Noise
levels were : .01 OC for the platinum wire thermometer, and 5 .03
m s"! for the sonic anemometers (J. Gaynor, personal communication).

The data and FORTRAN input read programs were sent on 9 track tape
by John Gaynor and Dave Welch of the NOAA Wave Propagation
Laboratory. The programs were run on a NPS Computer Science
Department Sun4 workstation, with analysis on the NPS mainframe.
The data covered three (MST) time periods: A) 2340 9/7/83 - 0340
9/8/83; B) 0440 - 0620 9/9/83; and C) 0000 - 0620 9/19/86.

The temperature time series seemed the least noisy of the available
data. So 10 Hz temperature data were plotted at levels four and
five (100 and 150 meters) for all three periods. A "wave" was
apparent on visual scanning period A at level four, between 0040
and 0105 MST, September 8, 1983 (see fig.3, windows 21-27).

12
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Figure 3 -Temperature (OC) vs. three minute windows.
The wave occurs in windows 21. - 27; turbulence episodes
in windows 45 - 47, 66 - 67, and 73 - 75.
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Since winds were southerly throughout, the "wave" was consistent
with the above lee wave criteria and flow over a small hill south
of the tower. I.e., eqn. 11.16 gave X = 1900 meters, for an
observed BVF = 0.03 Hz, and U0 = 9 m s-. From a USGS map for the
120 ft hill (elev. 5280 ft MSL), L1 = 300 meters along the tower
direction; so 5L, = 1500 meters. This fits the condition X - 5L1 .
But before and after the "wave" period, the BVF dropped below 0.01
Hz, so X exceeded 6200 meters, well beyond the lee wave condition.
This account is consistent with terrain induction of the wave. Lee
wave conditions were approached for windows 43-53, and 61-66, but
not as closely, and waves were also not evident in the time series.
Other periods showed no clear wave evidence. Period C also showed
pronounced noise spikes at 20 minute intervals and high noise
levels throughout most of its length.

In period A a reduced temperature variance region followed the
"wave" episode. This let us compare fractal characteristics of
both "wave" and non-wave portions of the time series. Thus, we
focused on level four data from period A for this study.

B. Analysis measures

DC, DA, turbulent kinetic energy (TKE) and its component velocity
variances, bulk Richardson number (RB), Brunt-Vdisala frequency
(BVF), buoyancy length (IB), and fast fourier transform (FFT)
spectra were all tested as analysis tools on the u, v, w, and T
time series at level four. RB, BVF, and 18 are bulk measures, and
were taken across levels three to five, a vertical span of 100
meters. The above parameters were checked for possible correlation
with DA.

The main disadvantage of bulk measures is that they apply to the
entire layer rather than a local sensor; Dc, DA, TKE, FFT spectra,
and variance are taken from local values valid only at the sensor.
So if an eddy is smaller than the 100 meter layer thickness, it may
impact the local sensor but not the heights at which the bulk
gradients of U, V, and 0 are measured.

Dc was computed for the level 4, 10 Hz temperatures for adjacent
three minute windows throughout period A. Three minute windows
were chosen, since the "wave" had a period of about 200 seconds.
As discussed above, ei was set to three data points (.2 sec). e)
was set to the window length, 1800 data points, for the first run.
For all runs the time axis was expanded by a factor of 100, so that
.1 seconds on the ordinate was equal to .010C on the abscissa.

The first run for Dc showed that the curve scaled linearly (slope
on the log-log plots was zero) for all log e 2.25, or E > 17.8
seconds for all windows. For most windows, the linearly scaling
portion began above c 3.2 seconds. For better resolution on the
fractal part of the curve, the run was repeated with an E0 = 17.8
seconds. Figure 4 shows a typical plot from this run.

14



The steep, linear part of the curve was linearly regressed to get
Dc. The linear region varied from window to window, depending on
the outer scale. E0 was determined manually for each window,
according to the following procedure.

1. A line was drawn with a straight edge along the steep,
linear portion of the curve (point A in Fig. 5).

2. A second line was drawn along the shallow, trailing edge
of the curve at high values of log e.

3. The ordinate where these two lines intersected was taken
to be the outer scale, e.-

Some windows also required that ei, be determined manually in a
similar fashion.
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DA was also computed for the temperature and the three velocity
components, using the same three minute windows for Period A. Ci
and zo were again .2 and 180 seconds for the first run. This
allowed approximately three decades of dynamic range.

The first run showed for all windows that log L(e) vs. log e had
constant, non-zero slope for e from .2 to around 60 seconds, but
not beyond this time duration. Thus, only log e 2.75 (E = 600)
was used, since this still provided a satisfactory 2.5 decades of
dynamic range. As mentioned above, another reason for setting EO
= 600 is that Xm/3 = 600 for the apparent "wave" period. Thus,
unlike DC, objective criteria could be used to determine the inner
and outer scale cutoffs for the slopes. Again a simple linear
regression was used to get DA for each window.

Mean turbulent kinetic energy (TKE) is defined as (a2 + CV2 + a2),
where au, a., and aw are the respective standard deviations of u,
v, and w. Variances are often measured over 30 minute to one hour
periods because the apparent "spectral gap" often occurs at about
1 hour and allows a convenient separation between large and small
scales. Statistical confidence in the value of second moments such
as variance also may not reach appropriate levels without averaging
over tens of minutes. In our case such a long averaging time would
not be useful in determining small scale differences between waves
and true turbulence. Instead, the TKE and variances were
calculated over the same three minute intervals as DC and D A for
purposes of direct comparison. All other parameters such as bulk
Richardson number or Brunt-Vdisdld frequency were also calculated
over three minute windows.

Bulk Richardson number, RB, was checked for possible correlations
with Dc or DA. Ideally, Rf, the flux Richardson number, or R,, the
gradient Richardson number, should be used, since our interest is
in the local stability at the sensor. Both Rf and Ri require that
the local vertical gradient of the mean wind be known, but this was
not available, since the sensors were spaced 50 meters apart
vertically. So, instead we used the bulk Richardson number,

RB - g AlavAZU ( & ) 2 + [( 1]

where A represents the quantity difference between the bottom and
top of the layer. The layer thickness, Az, was 100 meters, with
the layer centered on the level of interest.

The virtual potential temperature, e,, was assumed equal to
potential temperature, e. Though Stull (ibid) emphasizes that 0,
can differ from e by up to 40 C, this will not seriously affect RB
for three reasons. First, ae,/8z will not differ much by
substituting e for e; second, a 40C difference in the denominator
will not change RB by more than 10 percent; and third, the absolute
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value of RB is not important. In this study RB is only
qualitatively important as an indicator of stability changes.

The Brunt-Vaisdld frequency, BVF, was chosen to measure static
stability and, like RB, possible correlations with Dc or DA were
tested. BVF is defined as

BVF= gauv
Ua z

As with RB, we assumed that aev/az = AE/Az because we wished to
explore correlations in temporal changes in BVF with other
parameters and were not interested in the actual BVF values.

1B, the buoyancy length scale, was also determined as the standard
deviation of the vertical velocity divided by the Brunt-VdisdlA
frequency (lB = aw/BVF), and was assumed to be a measure of the
dominant eddy scale.

Detrended FFT spectra were also computed using a cosine squared, or
Hamming window to excise ringing and high frequency noise.
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IV. RESULTS AND DISCUSSION

A. Comparisons with local measures

Figure 3, the temperature series, shows both "turbulence" and
"wave" episodes. Using three minute windows, Figure 6a shows
distinct temperature variance, aT2 , peaks. The largest occurs in
windows 21-28, cotaneous with the "wave". Three other window
periods: 45-47, 64-67, and 73-75 are cotaneous with "turbulence".
The other UT2 peaks, like window 62, were cotaneous with monotonic
temperature changes across the window which did not seem to be
associated with the "wave" or "turbulence". These are absent in
the a,2 and a w2 plots (figs. 6b, c), but do appear in au- (fig. 6d).
Figure 7 shows a TKE spike during the "wave", but also for the
three "turbulent" episodes. So the TKE and variances do not seem
to distinguish between "wave" and "turbulence"; all appear as local
maxima.

For DA fig. 8 shows a typical log L(E) versus log E plot for a
three minute temperature window. Most plots were quite linear for
2.5 decades on the ordinate, from E = .2 to 60 sec. Figure 9 shows
the temperature DA. Unlike variance, the lowest values occur in
windows 21-28 during the "wave". Three other local minima occur in
windows: 42, 63, and 78, cotaneous with periods of seemingly low
"turbulence" in the time series. Unlike the extended "wave"
period, the other local minima occurred only in isolated individual
windows.

Figure 10 compares the temperature and velocity DA. The curves
agree, with near-simultaneous minima and maxima on all plots.
Figure 11 shows scatter plots of DA from one time series versus
another, indicating good linear correlation.
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Thus, DA seems to discriminate between "turbulence" (high DA) and
"wave" (low DA) episodes. For nocturnal boundary layers this
points to the possible use of DA = 0.35 from temperature, or
DA = 0.5 from vertical velocity data as conditional sampling cut-
off values to distinguish wave dominated periods from time series
of hot-wire and sonic anemometer data, while retaining most of the
real turbulence. However, more data containing both waves and
turbulence must be analyzed before a firm value can be suggested.
Different cut-off values may be appropriate for time series from
other instruments, such as hot film, lidar, and cup anemometers
having different amplitude ranges and time resolutions.

Though the following suggestion is untried as yet, note that DA is
large for "turbulence" but small for "waves", while the variances
are large for both. So wave periods can be highlighted by scanning
cotaneous windows with the combined operator, a~/DA, while
turbulence may be highlighted with the operator, Ow-DA.

All DA values increase toward the end of the "wave", cotaneous with
larger high frequency fluctuations in the T and w time series.
This may indicate "wave-break", or wave-turbulence energy transfer.
So DA may also be useful in determining wave-break episodes, unlike
other purely local measures such as variances or TKE. Waves may
augment the local shear, thereby instigating instability, but they
may also enhance TKE by increasing the buoyancy flux. Figure 12
shows a large increase in the non-phased averaged temperature flux
and hence buoyancy flux during the latter part of the "wave"
period, without a concommitant increase in the Reynolds stress
portion of the TKE shear generation rate. RB also plummets during
"wave-break", and before one "turbulence" burst, but not prior to
the other two "turbulence" episodes.

Cotaneous with the calm preceding these "turbulent" bursts, two of
the local DA minima occur just before the "turbulence" bursts and
DA maxima at windows 46 and 66. This is consistent with the
proposal that local shear may gradually increase during periods of
relative calm; but when such shear reaches an insupportable level,
K-H instability may be initiated and rapidly grow into turbulence.
This shear based initiation differs from the buoyancy based "wave"
case above.

The highest DA peak at window 36 bears more scrutiny, since it is
cotaneous with a relatively calm appearing, low variance portion of
the time series following the "wave" period. One possibility is
that "wave" initiated turbulent mixing may persist for some time as
intense but small scale turbulence, difficult to resolve by visual
scanning alone. DA may be a more acute discriminant than the eye
itself.
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Alternatively, one might also suggest, due to the l/ weighting,
that DA is largely a scale separator which seems to distinguish
between waves and turbulence only because turbulence in the stable
boundary layer is generally smaller scale than waves. However,
this does not explain the DA minima also seen at windows: 5, 42,
56, 63, and 78, where the fluctuations seem to be small scale.

Since Dc, the self-similar, fractal dimension depends on the y to
x-axis scaling ratio, we arbitrarily set .1 second = 100 0 C. As
expected, Dc behaved differently from DA, rising dramatically
during the "wave" episode, and falling immediately after. This
same behavior was observed during the "turbulent" episodes; thus,
Dc did not distinguish between the "wave" and turbulence. Moreover,
the long, ad hoc algorithm involved a dynamic range, Ei - E,
smaller and more subjective than the limits used for DA. For these
reasons DC does not seem useful as a wave/turbulence discriminant
for time series and was not pursued further.

Figure 13a,b show Fourier spectra of the temperature data before
and during the wave. Before taking the FFT, the data were linearly
detrended and tapered. Despite such processing, the plots are
quite noisy, showing only slight evidence of a spectral gap between
the "wave" and higher frequency fluctuations. There is a decided
increase in slope for the lower frequency components above 0.1 Hz
which may indicate wave presence. However, the "turbulence" periods
do not exhibit characteristics of any distinctive sort in the FFT
plots, as shown in fig. 14a,b.

DA also has a natural advantage over traditional spectral methods
in that it assumes that the amplitude is constant over the time
resolution in question. So DA actually relies on local Chapeau
basis functions rather than global basis functions, such as Fourier
series, Bessel functions, etc. to obtain digitized amplitude
differences. Thus, as illustrated in fig. 15, DA has no problem in
tracking large, nearly discontinuous jumps in amplitude, while FFTs
require that linear combinations of wave numbers much higher than
ei be found to both simulate such jumps and suppress fictitious
ringing outside the area of the jump discontinuity.
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B. Comparisons with bulk measures

Figures 16(a) and (b) show the temperature DA compared with Brunt-
Vdisala frequency (BVF). The BVF is highest during the "wave" when
DA is small. The three DA minima at windows 42, 63, and 78 occur
when the BVF is at or near a local maxima, consistent with the fact
that a higher BVF (more stable) will tend to dampen turbulence.
Also, most of the DA maxima occur when the BVF is either decreasing
or at a minimum, which indicates a less stable, more turbulent
atmosphere. But high BVF values occurred during both "wave" and
"turbulence" periods, so BVF cannot be used to resolve the two.
Figure 16(c) shows a scatter plot of the temperature DA versus BVF,
which indicates a weak negative correlation.

Figure 17 shows another weak, but positive, correlation between DA
and 1 B, the buoyancy length scale. The correlation is highest
during the "wave" episode, when 1 B drops rapidly, simultaneous with
a rapid drop in DA. After the "wave", DA and 1B both rise. The u
and T variances and BVF show local maxima at window 62, while the
u and w variances and 1B show local minima. The temperature time
series shows a rapid monotonic temperature fall. 1B does not seem
to distinguish between "wave" and turbulence. All such episodes
show moderate 1 B on the order of 8-12 meters. Since the BVF is in
the denominator of 1 B, 1B peaks during windows 18-20, and 35-40 when
the BVF is low. This seems to occur when the temperature time
series is relatively calm. Thus, large 1 B does not seem to
correlate with turbulence, and does not seem to be a good measure
of dominant eddy scale, as some have suggested (Stull, ibid).

Comparison of DA with RB in fig. 18 shows little correlation except
during the "wave" when RB rises dramatically, indicating increased
stability. None of the bulk measures seem to reliably distinguish
between "wave" and "turbulence" episodes. Note however, that high
correlations between DA and BVF, RB, or 1B may not be reasonable,
since DA is a local measure, whereas the latter three are bulk
measurements from widely vertically separated sensors. Higher
correlations might be expected, if more local measurements of AO
and Au were available. However, this capability is not currently
present on the BAO tower or similar facilities.

The wave/turbulence energy transfer during windows 25-28 may
initially blend the potential temperatures across levels 3 to 5
(see Fig. 19), resulting in high 1B and low BVF after window 35.
This is consistent with the local maxima in the w and v variances
around window 35. However, again the large DA maxima in window 35
of the u, v, w, and T traces may suggest continued turbulent
blending, principally at smaller scales, even after the level 4 and
5 potential temperatures have become well-mixed.

Though not suggested by our data, it is still possible that such
smaller scale blending is unduly accentuated, since DA is
normalized by i/", where n was assumed to equal unity. For
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inertial eddy cascade processes, n may indeed be less than unity.
As a first guess, since the turbulence energy spectrum tends to
have a -2/3 slope in the inertial subrange, one might expect the
turbulence velocity spectrum to have a -1/3 slope. In that case,
perhaps the correct self-affinity factor for inertial subrange
turbulence should be n = 1/3. So to modify DA one would first have
to modify the integrand in 11.14 somehow to retain the units of
pure amplitude for L(e).

Secondly, in pract-ce the inertial subrange scaling assumption is
not entirely viable. The BAO data resolution is 0.1 seconds, which
enters the dissipation range where the spectral energy slopes are
much higher. To eliminate contributions from this range, the inner
scale cutoff would have to be at longer times, thus narrowing the
dynamic range over which DA is computed. This may be possible for
convective data, since a longer window must be used to capture
fluctuations due to boundary layer scale eddies.

Thirdly, stability also tends to compress the vertical extent of an
eddy. Thus, inertial subrange turbulence may not have a - slope
in the energy spectrum, as in self-similar turbulence. That is,
there will be less energy in the larger scales. Mahrt and Gamage
(1987) have studied vertical/horizontal velocity aspect ratios for
structure functions as a function of stability. However, their
stability categories were not well defined by Ri or other measures.

In light of these difficulties and lack of supporting data, we
retain the present self-affine operator, DA, and note that it
appears to be the first potentially operationally useful wave/
turbulence discriminant. It may also be useful as a fast pre-
processor to quickly locate intermittent wave or turbulence periods
for more detailed phase averaged studies.

As an extension of this study, another potential use for DA is as
a general measure of the degree of chaos, applied to systems
ranging from pure waves and limit cycles, through standard chaotic
systems such as the Henon, Poincare, and Lorenz maps, as well as
transitional turbulence, and turbulence displaying extended
inertial subranges. One effort has begun to test DA on a set of
differential equations which describe coupled harmonic oscillators.
By eye the degree of chaos expressed in each oscillator's motion
seems to increase or decrease monotonically along the oscillator
lattice. An adequate measure this chaos has not been shown as yet.
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"turbulence" episodes.

In terms of computational efficiency DA does not require that
coefficients be determined for linear combinations of wave
frequencies to approximate moments of the time series amplitude,
i.e., no transform is needed. Moreover, since the slopes used to
determine DA seem well-behaved, perhaps sufficiently accurate
values of DA may be determined by computing L(e) only at the inner
and outer time resolutions. This would render DA computations
orders of magnitude faster than FFTs. Moreover, FFTs tend to treat
finite wave trains, i.e., discontinuities quite poorly. DA avoids
this problem because it involves local Chapeau basis functions,
rather than global transcendental or other basis functions. This
makes DA a potentially suitable analysis tool for turbulence
intermittency and coherent structures in general.

DA also shows promise in resolving wave-turbulence energy
transfers, or "wave-break" events. We suspect that "turbulence"
following the "wave" period studied may have been initiated by
growing positive buoyancy flux, while other "turbulence" episodes
may have relied more on shear generation of TKE. However,
correlations between DA and "wave-break" should be tested in more
detail, perhaps with the Gossard (ibid) data set which involved
vertical carriage traverses along the BAO tower, wherein local
values of Ri were measured. Ultimately, one would like to establish
DA as a function of local stability, so that DA turbulence cut-off
values could be associated with critical Ri.

Tentatively, we interpret the anomalous temperature DA peak
following the "wave" period as indicative of intense but small
scale turbulence, not easily resolved by visually scanning the time
series trace. Alternatively, due to the I/E self-affine
normalization, DA may act as simply a "scale" discriminator rather
than a wave/turbulence discriminator. However, DA minima were also
found during periods where visual scanning suggested low turbulence
levels, not consistent with the latter interpretation. Further
investigation to test DA on convective data is suggested to explore
this possibility. Proceeding in the other direction as well, DA
should be tested on systems which lie between the wave and limit
cycle regimes and turbulent systems displaying extended inertial
subranges, such as the Henon, Poincare, Lorenz, and other standard
chaotic attractors, to see if DA can distinguish degrees of chaos
in general. An immediate effort is underway to test DA on
differential equations which describe coupled harmonic oscillators.
To the eye in certain modes each oscillator along the lattice seems
to display increasingly chaotic motion. An adequate measure of the
this chaos has not been demonstrated as yet.

An n = 1/3 self-affine scaling factor for r is discussed as
possibly more suitable for turbulence, though this would require
modification of the integrand in 11.14 to avoid making L(E) also a
function of time.
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IV. SUMMARY AND CONCLUSIONS

Time series of T, u, v, and w from a stable atmospheric boundary
layer were examined using fractal techniques. The time series were
taken from 10Hz sonic anemometer and hot wire data at a height of
100 meters on the mast at the Boulder Atmospheric Observatory
(BAO). The time series featured a probably terrain induced gravity
"wave" period, as well as several periods of intermittent
turbulence.

Both self-similar fractal dimension, Dc, and self-affine fractal
dimension, DA, were explored in the analysis. The latter was
clearly superior in practice as well as principle. DA was the only
measure among the eight (five local and three bulk) studied which
seemed to distinguish the "wave" from "turbulent" episodes,
reaching minima during "wave" and maxima during "turbulence".

Since DA is a local measure, this implies that tower data from a
single fast response sensor can be used for wave/turbulence
discrimination, while phase averaging requires extensive numerical
processing and microbarograph array data as well. Most tower sites
are not equipped with microbarograph arrays.

Phase averaging also requires that the wave period be known prior
to analysis, otherwise the wave and turbulent components cannot be
distinguished. DA also requires an estimate of the minimum
expected wave period, Xm, to specify E,, the outer scale for the
slope. However, the required precision is perhaps a factor of two,
much lower than is needed for phase averaging. For Xm we note that
nocturnal atmospheric boundary layer gravity waves have typical
periods in the range 100 - 300 seconds.

From the limited results we tentatively suggest a conditional
sampling cutoff value, DA Z 0.35, to remove wave data from a hot
wire temperature time series. However, more data needs to be
analyzed to establish a firmer value. Since a,2 peaks during both
waves and turbulence, dividing DA by a,2 should highlight the wave
periods. Similarly, turbulence should be highlighted by multiplying
DA by a,2 .

Correlations between DA and various bulk measures of stability were
investigated, with weak correlations (r : .41) found with Brunt-
V~isAld frequency (BVF) and buoyancy length (1 B), and little
correlation with bulk Richardson number (RB). The issue of
inherently low correlations between local and bulk measures was
discussed.

Other possible parameters for distinguishing waves and turbulence
were investigated. Turbulent kinetic energy (TKE) proved less than
useful, since it included wave energy. Fast Fourier Transform
spectra were able to resolve the "wave" event as a change in slope
at low frequency, but no distinguishing features were found for the
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